[bookmark: _c0svaz5fwzm][bookmark: _GoBack]Executive Summary

[bookmark: _8imp2o3jj9hm]OpenStack users need large scale deployments, and certainty their environments will perform successfully at scale. High Availability protects users data and applications, providing certainty when deploying OpenStack services with Ansible. The limits of High Availability when users apply more nodes remains a less certain prospect, however. This document presents preliminary results for service availability testing at scale. The results indicate that OpenStack services can perform well at scale. The results provide certainty that OpenStack Ansible at scale can support users OpenStack environments.
[bookmark: _5hsrkqakw7re]Introduction
This document presents preliminary results from service availability testing. Research and testing recruited a 22 node OpenStack cluster configured for high availability, and installed with OpenStack Ansible. Rally and a modified variant of OS Faults were used to perform testing (https://github.com/osic/os-faults). Rally simulated various operations that a customer environment would run on a daily basis.	Comment by Joe Robinson: Content check - is this accurate?

OpenStack Users need to know their environments will perform under pressure. They need certainty that their large scale deployments will work under pressure, and will not experience downtime or data loss. High Availability protects against system downtime and data loss. Protecting against these two problems is valuable for a variety of OpenStack users. High availability means that failure of a single service should not cause an overall system failure. Successfully demonstrating High Availability works following node failure demonstrates to users certainty in running their OpenStack environments.

Some of the largest OpenStack cloud environments recruit large scale clusters for ecommerce, utilities, research, production, and development. Testing service availability and faults at scale, improves the reliability of an OpenStack environment deployed with Ansible. Improved reliability. Testing benefits OpenStack users who need large scale deployments. The research presented in this paper provides certainty through evidence that large scale OpenStack deployments work when experiencing failure without losing performance or data.
	Comment by Joe Robinson: This forms the base of the whitepaper narrative. The story is how you tested service availability to improve OpenStack with Ansible reliability. We can discuss and change this draft, though.	Comment by Luis Daniel Castellanos: Thanks, that sounds good. What do you suggest changing?	Comment by Joe Robinson: The next steps are [1] Adding in ties to the introduction, and the story behind the research through the document, and [2] moving some of the sections around to flow into a conclusion. I aim to have this ready by Tuesday afternoon US Central time.
[bookmark: _ramj1wt9y52i]Measurements of success in this test design was the amount of API calls, and overall service operation time. Fault injections simulated failure under pressure.

[bookmark: _gm0vqg2g5pzs]Services tested in the project included Nova, Neutron, Cinder, Glance, and Swift.
[bookmark: _lli6p0tq3rfa]System failure was simulated with a plugin. The following sections on Environment and Test Tools contain more information. Nova commands experienced rapid failure, or experienced no change. Neutron commands resisted failures, and operations continued in some instances until eventually failing, but with operations coexisting with failures. Keystone services showed degradations, but began to recover somewhat following each degradation. Most of the Glance service commands and operations persisted following failures. Cinder volumes were also resistant to failures. Swift services showed a broad array of dispersion following the failure simulation, however each failure degradation was tempered with recovery in the majority of instances tested.

The research presented in this paper demonstrated that OpenStack deployed with ansible at large scale will persist under pressure. Results overall indicated mostly positive trends for performance. The following sections provide a breakdown of performance by service. Results are presented in graph format.
[bookmark: _367hzp4iaicq]Configuration
[bookmark: _qjp6unxfex36]Environment	Comment by Kenny Johnston: Can we get more details on the environment? Perhaps a repo with the configuration files used? Software versions, etc.	Comment by Luis Daniel Castellanos: I think we could use Isaac's input here :)	Comment by Joe Robinson: Some more in depth details here would enhance the whitepaper for the more readers with more technical knowledge.
The test environment is a 22 node OpenStack (Newton) cluster deployed using OpenStack Ansible. The deployment includes the following services: Nova, Neutron, Cinder, Glance, and Swift. Three Ubuntu images served as the basis for testing performance. These included; ubuntu 14.04.5, ubuntu 16.04.1, and centos 7, which were configured as the image for instances to use when testing the OpenStack Ansible services. Three flavors were also available. These flavors ran the core OpenStack service (the osic-baremetal-comp flavor), and the optional block storage (the osic-baremetal-object flavor), object storage, and Ceph services (the osic-baremetal-object and osic-baremetal-block flavor).

The environment physical and virtual components included a Deploy Box connected to OnMental cloud servers. Playbooks and templates generated configuration files when creating instances from the Deploy Box. OpenStack Ansible Playbooks and templates installed the OpenStack services, and set up the networking configurations. The OpenStack environment recruited stable branches of the Mitaka and the Newton release.

The technical specifications regarding deployment steps, tools used and software versions can be found in the following link: https://github.com/osic/ref-impl/tree/master/onironic.
[bookmark: _7dyfrxslneiy]Test Tools
Rally was used to drive workload on the cluster, and faults were injected using the OS-Faults plugin. Minor changes were required to the OS-faults plugin to work with this particular deployment, as OS-Faults does not natively support OSA. Salt was installed and used by OS-Faults for running the tests on the cluster’s nodes.
[bookmark: _xdwwrl9urick]Test Overview
Tests targeted the high availability requirement that the failure of a single service should not cause a failure of the system. Designed to simulate the failure of specific services in the OpenStack environment, the subservices of each of the five primary services were individually either restarted, or killed. The expected behavior was that any service that was killed would be automatically restarted. API failures and performance were measured for tests that did not result in a permanent failure. While the system may enter a degraded state, it is expected that it would automatically return to a baseline state within a nominal amount of time (less than 5 minutes).
[bookmark: _9xvas857f3x9]Tested Scenarios
Services received testing for Keystone authentication, MySQL, Memcached, service metadata, and RabbitMQ. Tests specific to the Swift service included tests on the object updated, the proxy service, the object auditor, the object server, and swift container updater. Keystone services received disk and cpu testing. For the Glance service, the registry service received testing. Neutron testing involved killing and restarting the l3-agent, linuxbridge, and dhcp-agent. Nova service testing involved killing and restarting the nova-cert, nova-consoleauth, nova-conductor, and nova-scheduler.
[bookmark: _dzbtd2kaozxl]Results - The graphs

Graphs were created to aid in the analysis of the test results. These graphs were generated using the python package matplotlib (http://matplotlib.org/) and jupyter notebook (http://jupyter.org/).
The following example graph provides a visual road map. An example of how to read the test and performance results:[image:]
The green section of the graph represents the first 120 seconds. During this time, Rally is running the load on the target system, but no fault has been injected yet. The thin purple line at the extreme left of the green section is the failure injection. This is when the fault was triggered. It is important to note that the time that the fault is triggered is not necessarily the time that it actually takes effect. Using Rally and OS-Faults, it can be tens of seconds between a fault trigger (such as killing a process), and the time when the fault actually takes effect. The time difference appears in the example graph. Approximately 15 seconds after the failure Injection line, we can see that some of the API calls start failing (as indicated by the red dots and red background). The title details displayed on this graph are:

· The Rally task ID, which is the first line of the graph’s title, and the Rally Scenario and injected fault, which is the second line of the graph title.
· The task duration in seconds is represented on the horizontal (x) axis. The Atomic operation duration is represented on the vertical (y) axis.

In the graph legend, the labels represented include:

· Success Ops: The successful API calls conducted by the OpenStack service.
· Fail Ops: The failed API calls experienced after failure injection.
· Degradation Threshold: the 95th percentile of the baseline sample, which is several standard deviations above the mean number of measured operations.
· Mean Duration: the overall operations running mean.
· Degradation: a peak in the performance. Anything above the degradation threshold .
· Downtime: the time frame between the first and last failed operation.
· Baseline: The set of operations taken from the beginning of the task execution until the failure injection.
· Failure injection: the second the failure was injected.
[bookmark: _b85tn6882aa2]Results - Summary
[bookmark: _uuwomfdfksuc]Passing Tests
[bookmark: _gq95k4n3yehj]Most of the scenarios showed small degradation peaks and were not affected significantly by the failure injection.
[bookmark: _e1hmhcwfnmtx]Error Types Identified
[bookmark: _nhexi6xensgz]Services Fail to Recover
A severe error observed was a service failing to automatically restart after a complete test, including a failure injection. When the service received a failure injection, and would not restart automatically, a manual restart was required. Only after a manual restart would the OpenStack environment return to service. This type of error was seen specifically when killing Keystone, RabbitMQ, and MySQL.

It should be noted that the common trait connecting these services is that the code running the process is not managed by OpenStack. RabbitMQ and MySQL are third party opensource projects. Keystone, while a critical OpenStack project, is run under Apache.
[bookmark: _2xybulwo9bg3]Unexpected or Unexplained Test Anomalies - potential quota limits and resource constraints.
Two classes of tests experienced behavior that requires further investigation. First, nearly all Cinder tests experienced an error that may be related exhausting resource limits, such as a quota. A root cause analysis and subsequent fix is necessary for this issue. Second, and an expected outcome due to the test type, API calls fail in the vast majority of neutron tests. Manifested as an decreasing API performance over time until a threshold is reached, this issue may be due to a resource constraints.
[bookmark: _91e35noucn6n]Transient Failures after fault
Many of the injected failures resulted in decreased performance, and some number of transient API failures immediately after the injected fault. Tests that restarted Keystone, killed or restarted Nova, or restarted MySQL experienced these failures.
[bookmark: _da8kwilkvw18]
Tested scenarios - Graph Results:
1. Authenticate.Keystone:
1.1. Restart MySQL service on one node
1.2. Kill memcached service on one node
1.3. Stress memory on one node
1.4. Restart memcached service on one node
1.5. Stress disk on one node
1.6. Stress cpu on one node
1.7. Restart RabbitMQ service on one node
2. CinderVolumes.list_volumes:
2.1. Restart Keystone service on one node
3. GlanceImages.list_images:
3.1. Kill glance-api service on one node
3.2. Restart RabbitMQ service on one node
3.3. Restart Keystone service on one node
3.4. Restart MySQL service on one node
3.5. Restart glance-api service on one node
3.6. Kill glance-registry service on one node
3.7. Restart memcached service on one node
3.8. Restart glance-registry service on one node
3.9. Kill memcached service on one node
4. NeutronNetworks.create_and_list_networks:
4.1. Restart neutron-metadata-agent service on one node
4.2. Kill neutron-metadata-agent service on one node
4.3. Kill neutron-metering-agent service on one node
4.4. Restart neutron-metering-agent service on one node
4.5. Restart neutron-l3-agent service on one node
4.6. Kill neutron-l3-agent service on one node
4.7. Restart neutron-server service on one node
4.8. Kill neutron-server service on one node
4.9. Kill neutron-linuxbridge-agent service on one node
4.10. Restart neutron-linuxbridge-agent service on one node
4.11. Restart neutron-dhcp-agent service on one node
4.12. Kill neutron-dhcp-agent service on one node
4.13. Restart MySQL service on one node
5. NeutronNetworks.list_agents:
5.1. Restart Keystone service on one node
6. Nova Flavors.list_flavors:
6.1. Restart Keystone service on one node
7. NovaServers.boot_and_delete_server:
7.1. Restart memcached service on one node
7.2. Kill nova-cert service on one node
7.3. Restart nova-scheduler service on one node
7.4. Restart nova-api-metadata service on one node
7.5. Kill nova-consoleauth service on one node
7.6. Restart RabbitMQ service on one node
7.7. Restart nova-consoleauth service on one node
7.8. Restart nova-compute service on one node
7.9. Restart nova-cert service on one node
7.10. Kill nova-api-metadata service on one node
7.11. Kill nova-api-os-compute service on one node
7.12. Kill nova-compute service on one node
7.13. Reboot one node with RabbitMQ service
7.14. Kill memcached service on one node
7.15. Restart MySQL service on one node
7.16. Restart nova-api-os-compute service on one node
7.17. Restart nova-spicehtml5proxy service on one node
7.18. Kill nova-conductor service on one node
7.19. Kill nova-scheduler service on one node
8. SwiftObjects.create_container_and_object_then_delete_all:
8.1. Restart swift-object-auditor service on one node
8.2. Restart swift-object-server service on one node
8.3. Restart swift-container-sync service on one node
8.4. Kill swift-account-reaper service on one node
8.5. Kill swift-container-auditor service on one node
8.6. Restart swift-account-reaper service on one node
8.7. Restart swift-proxy-server on one node
8.8. Restart swift-object-replicator service on one node
8.9. Kill swift-object-updater service on one node
8.10. Kill swift-container-server service on one node
8.11. Restart swift-object-updater service on one node
8.12. Kill swift-proxy-server service on one node
8.13. Kill swift-account-server service on one node
8.14. Kill swift-object-server service on one node
8.15. Kill swift-container-replicator service on one node
8.16. Restart swift-account-auditor service on one node
8.17. Restart swift-container-server service on one node
8.18. Kill swift-object-replicator service on one node
8.19. Kill swift-object-auditor service on one node
8.20. Restart swift-container-auditor service on one node
8.21. Restart swift-account-replicator service on one node
8.22. Restart swift-container-reconciler service on one node
8.23. Restart memcached service on one node
8.24. Kill swift-account-auditor service on one node
8.25. Restart MySQL service on one node
8.26. Kill memcached service on one node
8.27. Restart swift-account-server service on one node
8.28. Restart swift-container-replicator service on one node
8.29. Restart swift-object-expirer service on one node
8.30. Kill swift-container-updater service on one node
8.31. Kill swift-object-expirer service on one node
8.32. Kill swift-container-reconciler service on one node
8.33. Kill swift-account-replicator service on one node
8.34. Restart RabbitMQ service on one node
8.35. Restart swift-container-updater service on one node
8.36. Kill swift-container-sync service on one node
9. SwiftObjects.list_objects:
9.1. Restart Keystone service in one node

1. Authenticate Keystone

1.1 Restart MySQL service in one node:

For this test, five runs were executed. In the first chart we can see minimum degradation between operations. As the runs were executed, the degradation started to increase, although still inconsistent for small periods of time. [image:]
[image:]
[image:]

1.2 Kill memcached service in one node:

For this test, three runs were executed. From the beginning, we start to see small degradation peaks, but fairly even operations duration distribution. Subsequent runs show more disperse operations duration distribution and higher peaks.

[image:]
[image:]
[image:]

1.3 Stress memory on one node:
[image:]

1.4 Restart memcached service on one node

Around 40-50 seconds after the failure injection we can observe small peaks of degradation, which are not significant results, in regards to overall high availability.

[image:]

1.5 Stress disk on one node:

Disk stress causes longer degradation periods and higher response times.
[image:]

1.6 Stress cpu on one node:

CPU stress did not cause a significant performance degradation.

[image:]

1.7 Restart RabbitMQ service on one node

Five tasks were executed for this test. Restarting RabbitMQ did not cause failures, but a short and erratic performance degradation appears along the task runtime.

[image:]
[image:]

2. CinderVolumes.list_volumes

2.1 Restart Keystone service on one node

The overall performance degradation time frame on this test is more than the 60% of the overall duration time. In the second execution, some failed operations and a small downtime threshold were observed.

[image:]
3 GlanceImages.list_images

3.1 Kill glance-api service on one node

The baseline sampling starts erratic, with some of operations above the degradation threshold. After approximately 40 seconds after the failure injection we can see a small degradation peak along with some failures. Overall, this failure injection did not harm badly the performance.

[image:]

3.2 Restart RabbitMQ service on one node

There is a lot more dispersion in this test, but most of the operations remain under the threshold. After the failure injection, the degradation intervals are more close together.
[image:]

3.3 Restart Keystone service on one node

Similar to Cinder tests, after restarting Keystone in one node the degraded operations start to show up more consistently causing serious degradation time frames

[image:]

3.4 Restart MySQL service on one node

There is no significant damage to the performance on this test. Injecting failures to background supporting services is nearly transparent to the OpenStack service performance

[image:]

3.5 Restart glance-api service on one node

There are not significant peaks in performance degradation in this test either. Ignoring the peaks of the baseline sample, we can see that after the failure injection there are two small peaks not exceeding the 2 seconds in duration. After these degradation peaks, the service goes back to normal for the rest of the test.

[image:]

3.6 Kill glance-registry service on one node
After the failure was injected more consistent but small performance degradation peaks appear. Only some operations exceeding the 2 seconds duration.
[image:]
3.7 Restart memcached service on one node

Similar to tests conducted on the MySQL service, there appears to be no significant degradation in this type of test with peaks under 2 seconds in duration per operation.

[image:]

3.8 Restart glance-registry service on one node

Similarly, no significant degradation exceeded 2 seconds in duration per operation.

[image:]

3.9 Kill memcached service on one node

Similarly, no significant degradation exceeded 2 seconds in duration per operation.

[image:]
4 NeutronNetworks.create_and_list_networks

Neutron tests show similar behavior, despite the failure injection. operation duration seems to increase as the test time increases.

4.1 Restart neutron-metadata-agent service on one node

From the baseline sampling, operation durations consistently starts to increase, which is expected since the testing environment constantly adds new networks for a single user and tenant. The more networks a user owns, the more time it takes to list them all.
[image:]
4.2 Kill neutron-metadata-agent service on one node

Similarly, new networks are added for a single user and tenant, and operations expand as result.
[image:]

4.3 Kill neutron-metering-agent service on one node

[image:]
4.4 Restart neutron-metering-agent service on one node

Similarly, new networks are added for a single user and tenant, and operations expand as result.

[image:]

4.5 Restart neutron-l3-agent service on one node

Similarly, new networks are added for a single user and tenant, and operations expand as result.
[image:]

4.6 Kill neutron-l3-agent service on one node

Similarly, new networks are added for a single user and tenant, and operations expand as result.
[image:]

4.7 Restart neutron-server service on one node

In this case we see some failures coexisting with successful operations, which could directly be a result of the failure injection. This does not necessarily means downtime, After approximately 180 seconds we see only failed operations, which indicates downtime.
[image:]

4.8 Kill neutron-server service on one node

In this case we see some failures coexisting with successful operations which does not necessarily means downtime, After approximately 200 seconds we see only failed operations which corresponds to a downtime.
[image:]

4.9 Kill neutron-linuxbridge-agent service on one node

From the baseline sampling we can see how operations’ duration consistently starts to increase. After the failure injection, operations start to exceed the degradation threshold after a few hundred seconds the failure injection/workload starts to hit the system generating a downtime in the service for the rest of the test.

[image:]
4.10 Restart neutron-linuxbridge-agent service on one node

[image:]

4.11 Restart neutron-dhcp-agent service on one node
[image:]

4.12 Kill neutron-dhcp-agent service on one node
[image:]

4.13 Restart MySQL service on one node

[image:]
5 NeutronNetworks.list_agents

5.1 Restart Keystone service on one node

Similar to other Keystone service tests the performance after the failure injection causes severe issues, going from less than a second of duration per operation to approximately 9 seconds of duration in some operations. Errors can also be observed.

[image:]
In later executions the sampling starts to have more long operations so the degradation threshold goes up by approximately 4 seconds. So we pass from having most of the operations lasting less than a second to having them now lasting around approximately 4 seconds.
[image:]
6 Nova Flavors.list_flavors

6.1 restart Keystone service on one node

Similar to other Keystone service tests the performance after the failure injection causes severe issues, going from less than a second of duration per operation to approximately 11 seconds of duration in some operations.
[image:]
[image:]
7 NovaServers.boot_and_delete_server

Nova tests have fewer baseline samples and fewer operations overall. All of the scenarios seem to behave optimally after the failure injection, only a few of them show failed operations and small downtime windows.

7.1 Restart memcached service on one node

Failure injection does not seem to affect the performance of the service.

[image:]

7.2 Kill nova-cert service on one node

Failure injection does not seem to affect the service.
[image:]

7.3 Restart nova-scheduler service on one node

Failure injection does not seem to affect the service.
[image:]

7.4 Restart nova-api-metadata service on one node

Failure injection does not seem to affect the service.

[image:]

7.5 Kill nova-consoleauth service on one node

Failure injection does not seem to affect the service.

[image:]

7.6 Restart RabbitMQ service on one node

Failure injection does not seem to affect the service.

[image:]

7.7 Restart nova-consoleauth service on one node

Failure injection does not seem to affect the service.

[image:]

7.8 Restart nova-compute service on one node

Failure injection does not seem to affect the service.

[image:]

7.9 Restart nova-cert service on one node

Failure injection does not seem to affect the service.

[image:]

7.10 Kill nova-api-metadata service on one node

Failure injection does not seem to affect the service.

[image:]

7.11 Kill nova-api-os-compute service on one node

After the failure injection, there is a small downtime window with a failure being reported in the graph.
[image:]

7.12 Kill nova-compute service on one node

Failure injection does not seem to affect the service..

[image:]

7.13 Reboot one node with RabbitMQ service

Failure injection does not seem to affect the service.

[image:]

7.14 Kill memcached service on one node

Failure injection does not seem to affect the service.

[image:]

7.15 Restart MySQL service on one node

Failure injection does not seem to affect the service.

[image:]

7.16 Restart nova-api-os-compute service on one node

Failure injection does not seem to affect the service.

[image:]

7.17 Restart nova-spicehtml5proxy service on one node

Failure injection does not seem to affect the service.

[image:]

7.18 Kill nova-conductor service on one node

Failure injection does not seem to affect the service.
[image:]

7.19 Kill nova-scheduler service on one node

Failure injection does not seem to affect the service.

[image:]

8 SwiftObjects.create_container_and_object_then_delete_all:

Most of the following tests presented zero, or almost zero performance degradation failures. In some of the graphs below, the degradation peaks barely cross the threshold after the failure injection, and most of the test completed all the operations successfully.

8.1 Restart swift-object-auditor service on one node

The small peak of performance degradation is barely crossing the threshold after the failure injection and after that goes back to normal.
[image:]

8.2 Restart swift-object-server service on one node

Performance degradation is barely visible. It is difficult to tell if the injected failure actually caused some damage
[image:]

8.3 Restart swift-container-sync service on one node

No failures or degradation present in this test

[image:]

8.4 Kill swift-account-reaper service on one node

With fewer samples this graph shows broader and wide dispersion between operations but despite that there is no degradation or failures after the failure injection.

[image:]

8.5 Kill swift-container-auditor service on one node

[image:]

8.6 Restart swift-account-reaper service on one node

[image:]

8.7 Restart swift-proxy-server on one node

The issues and damage caused after the failure injection is easier to see. Around approximately 35 seconds after the failure injection performance degradations peak along with some failures. After approximately 10 seconds, the issues disappear, and the performance goes back to barely exceeding the threshold.

[image:]
8.8 Restart swift-object-replicator service on one node

[image:]
8.9 Kill swift-object-updater service on one node[image:]

8.10 Kill swift-container-server service on one node

[image:]

8.11 Restart swift-object-updater service on one node

[image:]
8.12 Kill swift-proxy-server service on one node

[image:]

8.13 Kill swift-account-server service on one node

[image:]

8.14 Kill swift-object-server service on one node

[image:]

8.15 Kill swift-container-replicator service on one node

[image:]

8.16 Restart swift-account-auditor service on one node

[image:]

8.17 Restart swift-container-server service on one node

[image:]

8.18 Kill swift-object-replicator service on one node

[image:]

8.19 Kill swift-object-auditor service on one node

[image:]

8.20 Restart swift-container-auditor service on one node

[image:]

8.21 Restart swift-account-replicator service on one node

[image:]

8.22 Restart swift-container-reconciler service on one node

[image:]

8.23 Restart memcached service on one node

[image:]

8.24 Kill swift-account-auditor service on one node

[image:]

8.25 Restart MySQL service on one node

Restarting the MySQL service seems to cause significant damage to swift. After the failure injection, considerable degradation appears, going from approximately 1.5 seconds up to approximately 5 seconds duration along with failure operations. The failures keep showing up for around approximately 100 seconds along with successful operations, which means that there is not full downtime in this case, and performance goes back to normal in a short period of time.

[image:]
8.26 Kill memcached service on one node

[image:]

8.27 Restart swift-account-server service on one node

[image:]

8.28 Restart swift-container-replicator service on one node

[image:]

8.29 Restart swift-object-expirer service on one node

[image:]

8.30 Kill swift-container-updater service on one node

[image:]

8.31 Kill swift-object-expirer service on one node

[image:]

8.32 Kill swift-container-reconciler service on one node

[image:]

8.33 Kill swift-account-replicator service on one node

[image:]
8.34 Restart RabbitMQ service on one node

[image:]

8.35 Restart swift-container-updater service on one node

[image:]

8.36 Kill swift-container-sync service on one node

[image:]

9 SwiftObjects.list_objects

9.1 Restart Keystone service in one node

The same pattern of injecting Keystone restart failure is visible in this chart, causing a noticeable performance degradation to the service along with some failed operations. After the first task execution, the following executions operations with longer duration times happen more frequently which means that the service was not fully recovered.

[image:]

[image:]

[bookmark: _6vlu8t6lz4b2]Summary and future directions	Comment by Joe Robinson: I have attempted to summarise the results, and provide a link back to the narrative of the report. Please let we know what needs to change here if it is inaccurate.	Comment by Luis Daniel Castellanos: I think this looks good, Thanks

In summary, results overall indicated mostly positive trends for performance.
Average performance, and operation duration, remained despite the failures applied
to the testing environments.

API calls and service operations resisted failure injections. Mean degradation of services after failure injections indicate that OpenStack users can be certain their environment will run under pressure.

On common sub services (keystone, MySQL, Memcached, service metadata, and RabbitMQ) performance was erratic, with degradation changing rapidly throughout each test.
Common sub services were resistant to failure. The trend indicates OpenStack users can have confidence that commonly recruited service in an OpenStack environment will resist failure at scale.

The Swift Service resists failures. The OpenStack environment continued
operations even when Swift experienced degradation from failures, with some dispersion in results. The swift-account-reaper sub service performance changed after failure testing, with more widely ranging successful operations recorded. Swift-proxy-server results also experienced strong degradation after a failure test, however the service rapidly recovers with high availability. For OpenStack users that require nodes running object storage, the results indicate the swift service is a storage solution. MySQL failures are an ongoing issue, however. Restarting MySQL causes degradation of the swift service, and a slow recovery. The Glance service, similar to the common sub services, showed erratic operation performance and degradation, but ultimately remained running despite failures.

Neutron services remained functional after failure, however, depending on the sub service, eventually reported consistent operation failures. This indicates that while Neutron is resilient, as more performance pressure increases, the probability of failed networking operations also increases. Nova services only showed downtime following failure testing on the nova-api-os-compute sub service. All over operations running under the nova service showed reliable high availability.

Following testing at 22 nodes, OpenStack Users can be confident that their environment will continue operations, and is resilient to failures, with only limited instances of critical errors. The results have demonstrated that failure of a single service should not cause a failure of the system. The next goal for the project is extending the environment to a greater number of nodes, and exploring High Availability in a large scale OpenStack environment.
[bookmark: _2hcswgcjw8qg]Appendix A
[bookmark: _rt9id7w0hqh6]Bugs Filed:
https://bugs.launchpad.net/openstack-ansible/+bug/1656086

Issues Addressed:
https://01.org/jira/browse/OSIC-904
Neutron tests showed a linearly increasing task duration until failure ultimately resulted. Issue was due to test not removing networks until test completion and reaching limits set on the maximum number of networks allowed in the config. Resolved by modifying test to delete networks at the same rate they’re created, so average network count does not grow without bound during the test.
https://01.org/jira/browse/OSIC-905
An issue arose with the cinder services failing to work. Traced issue to NTP client failure. Filed bug 1656086 to address this issue.
https://01.org/jira/browse/OSIC-906
Issue with attaching cinder volumes was traced to routes not being properly populated on two systems and required dropping and raising the network interfaces.
https://01.org/jira/browse/OSIC-933
Notable downtime occurs in certain scenarios where mysql is restarted.
https://01.org/jira/browse/OSIC-934
Transitive failure when restarting keystone
https://01.org/jira/browse/OSIC-935
This has the same vlxan limit issue as the other tests, and shows a transitive failure when restarting tests
https://01.org/jira/browse/OSIC-936
Transitive failures when restarting a service
https://01.org/jira/browse/OSIC-937
Transitive failures when restarting a service
https://01.org/jira/browse/OSIC-938
RabbitMQ does not automatically get restarted when it is killed.
image90.png
b081f570-d0b1-4515-aa60-5999cf6dacf7
SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-container-reconciler service on one node

8.0 + « Success Ops

. « « Fail Ops

. . . —— Degradation Threshold

., —— Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

750 *

Operation Duration, s

0 100

image91.png
Operation Duration, s

6.0

b44dc19c-d802-4079-8d9c-4188cc9f40aa
SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-account-replicator service on one node

200 300 400

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image92.png
d4b7dd74-779f-4868-bda4-8faec33a48bb

SwiftObjects.create_container_and_object_then_delete_all(1):restart rabbitmq service on one node

Operation Duration, s

18

17

16

15

14

13

12

11

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image93.png
db4ac77d-d23f-4926-a18f-b655b31c25e1
SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-container-updater service on one node

+ « Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

image94.png
Operation Duration, s

fld7a474-9aa0-4ce6-b18d-f8332cfacf32
SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-container-sync service on one node

8.0

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

0 100

image95.png
577d7dd9-0f17-4372-ad11-ee7e0cafe07b
SwiftObjects.list_objects_in_containers(1):restart keystone service on one node

« + Success Ops

« « Fail Ops

—— Degradation Threshold
Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

0 20 20 60 80 100 120

image96.png
Operation Duration, s

12

10

577d7dd9-0f17-4372-ad11-ee7e0cafe07b
SwiftObjects.list_objects_in_containers(2):restart keystone service on one node

20

40

60
Time, s

80

100

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image1.png
84ff85e5-08d2-4e14-al0e-d8f9187ba04a
SwiftObjects.create_container_and_object_then_delete_all(1):restart mysql service on one node

+ « Success Ops

« « Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

Operation Duration, s

Time, s

image2.png
Operation Duration, s

0f1970b7-4697-43ca-9448-8b160a3de742
Authenticate keystone(1):restart mysgl service on one node

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image3.png
Operation Duration, s

0f1970b7-4697-43ca-9448-8b160a3de742
Authenticate keystone(2):restart mysgl service on one node

+ + Success Ops

« « Fail Ops

—— Degradation Threshold

~—— Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

image4.png
Operation Duration, s

0f1970b7-4697-43ca-9448-8b160a3de742

ode

Authenticate. keystone(3):restart mysgl service on one n

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image5.png
Operation Duration, s

21d07960-f3ba-4dee-b7d6-019fed46aad0c
Authenticate. keystone(1):kill memcached service on one node

+ + Success Ops

« « Fail Ops

—— Degradation Threshold

~—— Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

0 50 100 150 200

image6.png
Operation Duration, s

21d07960-f3ba-4dee-b7d6-019fed6aad0c
Authenticate. keystone(2):kill memcached service on one node

+ « Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

image7.png
Operation Duration, s

21d07960-f3ba-4dee-b7d6-019fed6aad0c

0A7A§thent\cate.keystone(3i:k\l\ memcached service on one node

0.70

0.65

+ « Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

image8.png
26bdc015-9d97-44d3-96bc-5677ec914ch8
ssmem keystone service on one node

Authenticate keystone(1):stre:

Operation Duration, s

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image9.png
2f8ba691-f8d8-4f30-bd95-00c383e3a759

Authenticate keystone(2):restart memcached service on one node

' + + Success Ops

« « Fail Ops

—— Degradation Threshold

~—— Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

Operation Duration, s

image10.png
5274d50d-3e3d-4da3-ac77-35b1048e9b60

Authenticate keystone(1):stressdisk keystone service on one node
" Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

Operation Duration, s

image11.png
Operation Duration, s

4.0

699f815f-edac-4ece-92d4-9a81948598e2
Authenticate. keystone(1):stresscpu keystone service

on one node

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image12.png
Operation Duration, s

afaff3el-70a4-462e-92c4-b983c4414b92
Authenticate. keystone(1):restart rabbitmq service on one node

+ + Success Ops

« « Fail Ops

—— Degradation Threshold

~—— Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

image13.png
Operation Duration, s

afaff3el-70a4-462e-92c4-b983c4414b92
Authenticate. keystone(5):restart rabbitmq service on one node

+ + Success Ops

« « Fail Ops

—— Degradation Threshold

~—— Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

image14.png
7435967e-750e-4a34-80dd-54b15544561a
CinderVolumes.list_volumes(1):restart keystone service on one node

12 « « Success Ops

« « Fail Ops

—— Degradation Threshold
Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

10

Operation Duration, s
o

0 100 200 300 400

image15.png
Operation Duration, s

Glancelmages.list_images(1):kill glance-api service on one node

45

4.0

35

3.0

2.5

2.0

15

10

2b100ded-4eec-4eaf-9281-5011cc5e41d6

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image16.png
2cb13f65-f89c-4398-8098-47d69707b7c3
Glancelmages.list_images(1):restart rabbitmgq service on one node

+ + Success Ops

« « Fail Ops

—— Degradation Threshold

~—— Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

Operation Duration, s

image17.png
68f1f9af-e3c3-4f42-be32-25f68503a4cd
Glancelmages.list_images(2):restart keystone service on one node

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

Operation Duration, s

image18.png
Operation Duration, s

7ae8a988-56¢7-4b40-a0be-490376610d91
Glancelmages.list_images(1):restart mysql service on one node

L4F « o Success Ops
131 « « Fail Ops
—— Degradation Threshold

121 ~— Mean Duration
11}, . Degradation

a .. Downtime
1o vl Baseline

3 ° P
0.9 [t 3 M W Failure injection
- o g i
08 K
o7 Y il IS sita]

0 100 200 300 400

image19.png
9ffde735-0128-47a3-8dcf-020b6b1d8398
Glancelmages.list_images(1):restart glance-api service on one node

Success Ops
Fail Ops
Degradation Threshold
Mean Duration
Degradation
Downtime
Baseline

Failure injection

Operation Duration, s

image20.png
ab711518-7e9a-456¢-9209-5ca29839e9b1

Glancelmages.list_images(1):kill glance-registry service on one node

" " " Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

Operation Duration, s

o Faargr h A3 Lo)

W V"

image21.png
b5251e0f-58d2-4f38-b5db-4177194df138

Glancelmages.list_images(1):restart memcached service on one node

! « + Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

image22.png
bed14d4d-b8a4-40a6-ae34-3281cc7e321a

Glancelmages.list_images(1):restart glance-registry service on one node

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

Operation Duration, s

image23.png
fa5cd0fd-cd83-4040-a72b-aa892db905fa

Glancelmages.list_images(1):kill memcached service on one node

Operation Duration, s

+ + Success Ops

« « Fail Ops

—— Degradation Threshold

~—— Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

image24.png
046dd220-e0de-4f49-bf09-64fc56549ddd

NeutronNetworks.create_and_list_networks(1):restart neutron-metadata-agent service on one node
' + + Success Ops

« « Fail Ops

—— Degradation Threshold
Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

Operation Duration, s

0 100 200 300 400
Time, s

image25.png
89efcodd-5fcd-4549-b782-eb83ffd425ab

NeutronNetworks.create_and_list_networks(1):kill neutron-metadata-agent service on one node

Operation Duration, s

3.0 o

0 100

200 300 400
Time, s

+ « Success Ops

« « Fail Ops

—— Degradation Threshold
Mean Duration
Degradation
Downtime
Baseline

B Failure injection

image26.png
Oe31a6dc-5822-4f9b-932f-655f070eccdb
NeutronNetworks.create_and_list_networks(1):kill neutron-metering-agent service on one node

+ « Success Ops

« « Fail Ops

—— Degradation Threshold
Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

0 100 200 300 400
Time, s

image27.png
dfe0ae28-51a8-4ed4-969d-1b81addffod1l

NeutronNetworks.create_and_list_networks(1):restart neutron-metering-agent service on one node

Operation Duration, s
& °

°

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image28.png
3ad62516-fa96-475d-9f9e-62e9928adb03
NeutronNetworks.create_and_list_networks(1):restart neutron-I3-agent service on one node

« + Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

Time, s

image29.png
a5b5676a-20a1-4282-876f-bf00e4f74657

NeutronNetworks.create_and_list_networks(1):kill neutron-I3-agent service on one node

Operation Duration, s

3.0

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

Time, s

image30.png
78ecfofc-9e5f-49bc-84ac-2ef3f201e8a3
NeutronNetworks.create_and_list_networks(1):restart neutron-server service on one node

' « + Success Ops

« « Fail Ops

—— Degradation Threshold
Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

0 100 200 300 400

image31.png
cadcbc80-f4e7-4b10-b16f-83266b5761a9

NeutmnNetwgrks.createiandilistinetworks(l) k\ll‘neutron—se‘rver service on one node
« + Success Ops

« « Fail Ops
3 4 | — Degradation Threshold
Mean Duration
Degradation
. Downtime

Baseline
B Failure injection

Operation Duration, s

|

%
&

0 100 200 300 400

image32.png
7c0d1a31-4ad6-43ce-bdeb-6f2dac586666

NeutronNetworks.create_and_list_networks(1):kill neutron-linuxbridge-agent service on one node

Operation Duration, s

3.0

100 200 300 400
Time, s

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image33.png
808753af-ca52-4287-ab93-3f98717f1688

NeutmnNetworks.crzesateiandilistinetworks(l) restart neutron-linuxbridge-agent service on one node

« + Success Ops

« « Fail Ops

—— Degradation Threshold
Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

image34.png
8874f36a-f4a6-42d5-8c2a-d6e93377e212

NeutronNetworks.create_and_list_networks(1):restart neutron-dhcp-agent service on one node

Operation Duration, s

+ + Success Ops
« « Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image35.png
a7f3c2e5-0dac-43de-8107-aa99e4b10875

NeutronNetworks.create_and_list_networks(1):kill neutron-dhcp-agent service on one node
=

+ + Success Ops

« « Fail Ops

—— Degradation Threshold
Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

Operation Duration, s

10 ;

0 100 200 300 400
Time, s

image36.png
b9dc6164-98f5-4b98-8954-55667540ch42

NeutronNetworks.create_and_list_networks(1):restart mysgl service on one node

Operation Duration, s

2.5

« + Success Ops

« « Fail Ops

—— Degradation Threshold
Mean Duration
Degradation
Downtime
Baseline

B Failure injection

image37.png
48feed1c-c902-4bb1-b166-1b5cd62687b5
Neutré)nNetworks.listﬁagents(1):restart keystone service on one node

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

Operation Duration, s

image38.png
Operation Duration, s

48feed1c-c902-4bb1-b166-1b5cd62687b5
NeutronNetworks.list_agents(3):restart keystone service on one node

20

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

o PNV v
40 60 80 100

Time, s

image39.png
46bcfabc-2299-4822-8d08-cf8d4b212077
NovaFlavors.list_flavors(1):restart keystone service on one node

+ « Success Ops

10 « « Fail Ops

. —— Degradation Threshold
8 § . Mean Duration
Degradation

6 Downtime

Baseline

® °| |mmm Failure injection

Operation Duration, s

0 20 20 60 80 100 120

image40.png
46bcfabc-2299-4822-8d08-cf8d4b212077
NovaFlavors.list_flavors(2):restart keystone service on one node

8 .. + + Success Ops

. « « Fail Ops

—— Degradation Threshold

6 —— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

7

Operation Duration, s

image41.png
0485110c-fdba-4272-944c-41ead6db7e76

NovaServers.boot_and_delete_server(1):restart memcached service on one node

Operation Duration, s

+ + Success Ops

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

1 Downtime

[Baseline

EEm Failure injection

image42.png
05261e72-6eab-4576-a532-a8d174ccbc74

NovaServers.boot_and_delete_server(1):kill nova-cert service on one node

Operation Duration, s

29

28

27

26

25

24

23

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image43.png
NovaServers.boot_and_delete_server(1):restart n

Operation Duration, s

17

16

15

14

13

12

096fa9e3-1e36-4961-a92f-3671f232754a

ova-scheduler service on one node

> + « Success Ops

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

) Downtime

o Baseline

B Failure injection

image44.png
0e9b6c30-e2a5-4165-a3e7-fdfedccha29e
NovaServers.boot_and_delete_server(1):restart nova-api-metadata service on one node

. * . Lt + « Success Ops

w X - 1 [+ - Failops

6 o e * ., e+ | | — Degradation Threshold
. . Tl ~—— Mean Duration
215 ‘-" . t.t « 1| Degradation
H o) Downtime
51 “‘1 |7 Baseline
g . CI PR ° EEm Failure injection
-] . . 1

» . e . . =

0 100 200 300 200

image45.png
1f342cb1-710d-47ed-a4b2-140472f64023
NovaServers.boot_and_delete_server(1):kill nova-consoleauth service on one node

) « + Success Ops

» « « Fail Ops

28 ~— Degradation Threshold
:— —— Mean Duration
% 27 - Degradation
3 26 1 Downtime
s [Baseline
§ 25 B Failure injection
g
S

24

23

image46.png
20bcb315-3ab1-4cf0-8484-4ce1d49bld9e

NovaSer\llgrs.bont_and_delete_server(1]:restart rabbitmq service on one node

Operation Duration, s

17

16

15

14

13

12

+ « Success Ops

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

) Downtime

o Baseline

B Failure injection

image47.png
3463efd8-c286-4fe6-ad3e-721d0ef44649

NovaServers.boot_and_delete_server(1):restart nova-consoleauth service on one node

Operation Duration, s

+ « Success Ops

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

) Downtime

o Baseline

B Failure injection

image48.png
38836f60-9063-4ch3-a684-64c791ed0403

NovaServers.boot_and_delete_server(1):restart nova-compute service on one node

Operation Duration, s

19

18

17

16

15

14

13

12

+ « Success Ops

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

) Downtime

o Baseline

B Failure injection

image49.png
NovaServers.boot

Operation Duration, s

18

17

16

15

14

13

12

4e01ccdb-531f-403d-aeb3-7e7db0d10691

_and_delete_server(1):restart nova-cert service on one node

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image50.png
Operation Duration, s

31

30

29

28

27

26

25

24

4ed1d932-413a-4291-afe7-018b7fhdffge
NovaServers.boot_and_delete_server(1):kill nova-api-metadata service on one node

+ « Success Ops

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

) Downtime

o Baseline

B Failure injection

image51.png
58857254-5e0a-44f0-a3b7-27d65348332e
NovaServers.boot_and_delete_server(1):kill nova-api-os-compute service on one node

30 1 |+ + Success Ops

« « Fail Ops

—— Degradation Threshold
~—— Mean Duration

- Degradation

1 Downtime

[Baseline

B Failure injection

Operation Duration, s

Time, s

image52.png
Operation Duration, s

7b64fe0c-07e6-44aa-a6f7-a960aeda707b
NovaServers.boot_and_delete_server(1):kill nova-compute service on one node

29

+ « Success Ops

28

27

26

25

24

23

22

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

[Downtime

o Baseline

B Failure injection

Time, s

image53.png
NovaServers.boot_and_delete_server(1):reboot

Operation Duration, s

833e4d32-0b6f-406a-b102-cb03a6333071
one node with rabbitmq service

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image54.png
90c3d092-af1a-4773-b868-a490be8cd118

NovaServers.boot_and_delete_server(1):kill memcached service on one node

Operation Duration, s

29

28

27

26

25

24

23

Time, s

+ « Success Ops

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

) Downtime

o Baseline

B Failure injection

image55.png
NovaServers.boot_and_delete_server(1):restal

Operation Duration, s

17

16

15

14

13

12

92c4e62f-7107-4a43-beb8-f4015e8088cd

rt mysql service on one node

+ « Success Ops

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

) Downtime

o Baseline

B Failure injection

. T .
. : -
100 200 300

400

image56.png
NovaServers.boot_and_delete_server(1):restart nova

Operation Duration, s

17

16

15

14

13

96af6feb-e060-4837-ad90-e6f9913880f0

100

-api-0s-compute service on one node

+ « Success Ops

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

) Downtime

o Baseline

B Failure injection

image57.png
NovaServers.boot_and_delete_server(1):restart nova-sj

Operation Duration, s

b516e7a5-ff69-4994-a29c-3518843e1d3d
htmlI5proxy service on one node

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image58.png
Operation Duration, s

28

27

26

25

24

23

c523f9de-4aca-495a-9d22-f8e86ca540d2
NovaServers.boot_and_delete_server(1):kill nova:

-conductor service on one node

+ « Success Ops

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

) Downtime

o Baseline

B Failure injection

image59.png
ed5f4d72-7790-499d-bch7-479763bd97ch

NovaServers.boot_and_delete_server(1):kill nova-scheduler service on one node

Operation Duration, s

30

29

28

27

26

25

24

23

0

+ « Success Ops

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

) Downtime

o Baseline

B Failure injection

image60.png
03dd1d92-d1b1-4d24-95b7-12571181cbd8
SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-object-auditor service on one node

+ + Success Ops
17

13

EEm Failure injection

« « Fail Ops
16 —— Degradation Threshold
- ~— Mean Duration
% 15 Degradation
3 14 Downtime
s Baseline
S

12

11

image61.png
0436dace-a336-4943-b9c3-a23df5840ff8
SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-object-server service on one node

+ « Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

image62.png
Ob2aa2db-abe7-4cf1-9abd-219e473826c8
SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-container-sync service on one node

« + Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

image63.png
0b9ble7f-6bc0-4d91-879f-086f2a6el3b7
SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-account-reaper service on one node

8.0 . + + Success Ops
.. . « « Fail Ops
. . ~—— Degradation Threshold
75 * . : ° ~—— Mean Duration
. Degradation
Downtime
Baseline
EEm Failure injection

Operation Duration, s

image64.png
1532f360-6aal-4255-ab90-c4bblcac4511
SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-container-auditor service on one node

+ « Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

0 100 200 300 400

image65.png
1dd5840a-4d50-4df2-9518-1ab5f74994d8

SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-account-reaper service on one node

Operation Duration, s

0 100 200 300 400

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image66.png
21b6a490-c6a9-4ed1-a4c3-6859830a9115

SwiftObjects.create_container_and_object_then_d

Operation Duration, s

elete_all(1):restart swift-proxy-server service on one node

+ « Success Ops

« « Fail Ops

—— Degradation Threshold
—— Mean Duration

- Degradation

) Downtime

o Baseline

B Failure injection

image67.png
30e8f01f-af6e-4db0-8e00-eea58ch44b57
SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-object-replicator service on one node

+ + Success Ops

« « Fail Ops

—— Degradation Threshold

~—— Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

Operation Duration, s

image68.png
33f52e00-8345-4787-9757-7294f084764c
SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-object-updater service on one node

+ « Success Ops

B Failure injection

Lo . n « « Fail Ops
75 ° ~— Degradation Threshold
2 R . — Mean Duration
2 : : et R Degradation
2 Downtime
s Baseline
%
S

image69.png
35d65016-58e4-462f-bce5-d1€951578284
SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-container-server service on one node

« + Success Ops

80 « « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

image70.png
Operation Duration, s

373897f1-b8fb-49ec-b8a3-51b8d6504cd7
SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-object-updater service on one node

18

200 300 400

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image71.png
37b2e0a5-1df3-4567-9a98-d942dddcf7f2
SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-proxy-server service on one node

+ « Success Ops
. . « « Fail Ops

.. . —— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

8.0

Operation Duration, s

image72.png
455706b5-5bbd-4bd3-8ce3-a98b17aa0680

SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-account-server service on one node

Operation Duration, s

8.0

+ + Success Ops
« « Fail Ops
—— Degradation Threshold

Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

image73.png
47c432cc-ab69-4955-aa9d-c9bc0991ab58

SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-object-server service on one node

Operation Duration, s

100 200 300 400

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image74.png
Operation Duration, s

56b9a8bc-fc98-45c9-9c49-6f3c0044blce
SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-container-replicator service on one node

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

0 100 200 300

image75.png
5858b393-80c3-45a4-bd9b-6de6b5e272f3
SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-account-auditor service on one node

« + Success Ops

‘ « « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

18 .

Operation Duration, s

image76.png
65c7be76-e363-4280-8c46-a993b17bdad8

SwiftObjects. create;ont;g\eriandiobjectithenideleteiaH(l):restart swift-container-server service on one node

« + Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

image77.png
67f8221e-9705-42ee-al6d-a3f5d4977f59

SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-object-replicator service on one node

Operation Duration, s

8.0

+ + Success Ops
« « Fail Ops
—— Degradation Threshold

Mean Duration
Degradation
Downtime
Baseline

EEm Failure injection

0 100 200 300 400

image78.png
6b55flaa-8211-44d3-86ae-acfada551d67

SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-object-auditor service on one node

Operation Duration, s

75

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image79.png
6f3f541a-1378-445¢-bfa3-8bab6de149c1
SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-container-auditor service on one node

18 . + + Success Ops
17 « « Fail Ops
—— Degradation Threshold

S16 ~—— Mean Duration
% 15 Degradation
2 Downtime
s 14 Baseline
g 13 WM Failure injection
g
S

12 fye

11

image80.png
702e14d3-37f1-4f24-9318-e4a325d4fc8f

SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-account-replicator service on one node
20 I + « Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

18

16

14

Operation Duration, s

12 4

image81.png
73042623-d053-42e4-969a-daeac6ad96f3

SwiftObjects. createiconta\er§riandiobjectithenideleteiaH(l):restart swift-container-reconciler service on one node

« + Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

image82.png
79b4beeb-a7fb-4236-a2fd-9b356fd1880e
SwiftObjects.create_container_and_object_then_delete_all(1):restart memcached service on one node

« + Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

image83.png
8249dch2-56a8-4c95-ad6b-1486362d5bch
SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-account-auditor service on one node

« + Success Ops

M « « Fail Ops

Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

image84.png
Operation Duration, s

93b48dd1-b1b6-423f-8c70-ea64130935c8
SwiftObjects.create_container_and_object_then_delete_all(1):kill memcached service on one node

75k

100

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

image85.png
95008ccc-d05d-4607-9207-b16f704093b1
SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-account-server service on one node

« + Success Ops

« « Fail Ops

—— Degradation Threshold

—— Mean Duration
Degradation
Downtime
Baseline

B Failure injection

Operation Duration, s

image86.png
98fbb849-e981-4efb-8e13-6438b7ac59el
SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-container-replicator service on one node

20 + + Success Ops
« « Fail Ops

18 —— Degradation Threshold
- ~—— Mean Duration
% 16 Degradation
3 Downtime
§ e Baseline
g EEm Failure injection
g
S

12

image87.png
9aeee981-1c52-4adb-bc0b-69f85b79d06a
SwiftObjects.create_container_and_object_then_delete_all(1):restart swift-object-expirer service on one node

24 1 « + Success Ops
22 « « Fail Ops
—— Degradation Threshold

220 — Mean Duration
% 1 Degradation
,§ 18 Downtime
S 16 Baseline
g W Failure injection
814

image88.png
9d845679-9462-4cle-903a-fb4cb846d81b

SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-container-updater service on one node

Operation Duration, s

8.0

Success Ops

Fail Ops

Degradation Threshold
Mean Duration
Degradation
Downtime

Baseline

Failure injection

0 100 200 300 400

image89.png
9f6b0390-dafb-40cc-b745-c5f678c9cf6b
SwiftObjects.create_container_and_object_then_delete_all(1):kill swift-object-expirer service on one node

8.0

. + « Success Ops
. . « « Fail Ops
—— Degradation Threshold
—— Mean Duration
Degradation
Downtime
Baseline
B Failure injection

Operation Duration, s

